Erstellt lokal einen neuen Branch mit dem Namen <name-des-remote-branches>, der auf dem Stand des gleichnamigen remote branches ist. Dieser neue branch ist auch direkt für weitere commits oder pulls von remote bereit.
Rückgängig machen des letzten Commits [Änderungen behalten]:
git reset --soft HEAD~1
Dabei werden die Changes für den letzten commit gelöscht, sondern verbleiben nach Ausführen des Befehlts als uncommitete Veränderungen, die nun weiter verändert oder ersetzt werden können.
Rückgängig machen des letzten Commits [Änderungen löschen]:
git reset --hard HEAD~1
Dieser Befehl macht den letzten commit rückgängig und löscht die damit verbundenen Änderungen.
Rückgängig machen mehrerer commits.
Ihr wollt mehrere commits rückgängig machen. Ihr kennt die genaue Anzahl? Und sie ist x. Dann verwendet dafür:
git reset --soft HEAD~x
git reset --hard HEAD~x
Ihr kennt sie nicht und habt keine Lust zu zählen. Dan schaut via git log den Hash des letzten Commits nach: z.B. 0bc1yz und gebt ein:
git reset --soft 0bc1yz
git reset --hard 0bc1yz
Zeige commits aus einem Branch, die nicht in einem anderen Branch sind.
Der folgende Befehl zeigt dir, welche commits zwar bereits im <feature_branch>, aber noch nicht im <other_branch> sind:
Das ist ein Vector Zeichenprogramm. So ähnlich wie Inkscape. Da Inkscape aber auf Mac einfach überhaupt nicht ordentlich funktioniert, habe ich mir vor circa eine Woche die Trail des Affinity Designers geholt und bin mir ziemlich sicher, dass ich mir das Programm kaufen werden in drei Tagen, wenn die Trail ausläuft. Ich verwende das Programm zusammen mit dem Intuos 4 Medium. Wenn ich etwas mehr Geld hätte, würde ich mir aber das Intuos Pro Medium oder sogar ein Cintiq 13HD holen. Das mache ich sobald sich bewährt hat, dass ich meine Artikel für genughaben, permakultur-praktisch und genugschlafen regelmäßig illustriere, wie ich es z.B. hier erstmals getan habe. Absolut genial, gute Shortcut-Funktionen für das Programm, etwas weniger für mein, besser für die teureren Grafiktablets. Vieleicht probiert ihr es ja auch mal aus.
Was ich lese.
Ich versuche mir jetzt jeden Vormittag 1-2 Stunden Zeit zum Lesen zu nehmen. Gestern war das:
The Marriage Descision: Everything forever or Nothing Ever Again auf Tim Urbans Blog waitbutwhy. Tim Urban untersucht die Art und Weise wie man sich dafür oder dagegen entscheiden kann.
Heute habe ich The Age of the Essay von Paul Graham gelesen. Wieder. Er kommt darauf, das moderne Essays sich an die Streitschriften anlehnen, die man in Gerichtssälen benötigt und daher zu wenig mit Wahrheitsfindung zu tun haben, das will er anders machen. Er will, dass seine Essays im Sinne Montaignes der Wahrheitsfindung dienen. Er notiert alles ihn überraschende und denkt dann schreibend darüber nach, diskutiert die Ergebnisse mit Freunden und schreibt dort um, wo es zu langweilig oder nicht überzeugend ist. Er beginnt anders als mit modernen Texten nicht mit einer initialen These, das ist aus seiner Sicht Sophismus. Ich kann ihm da nur zustimmen. Hier ein paar Zitate aus dem Text.
Zitat: Whatever you study, include history– but social and economic history, not political history. History seems to me so important that it’s misleading to treat it as a mere field of study. Another way to describe it is all the data we have so far.
Zitat: Swords evolved during the Bronze Age out of daggers, which (like their flint predecessors) had a hilt separate from the blade. Because swords are longer the hilts kept breaking off. But it took five hundred years before someone thought of casting hilt and blade as one piece.
Zitat. Über Ungehorsam: Above all, make a habit of paying attention to things you’re not supposed to, either because they’re “inappropriate,” or not important, or not what you’re supposed to be working on. If you’re curious about something, trust your instincts. Follow the threads that attract your attention.
Zitat: Gradualness is very powerful. And that power can be used for constructive purposes too: … you can trick yourself into creating something so grand that you would never have dared to plan such a thing. Indeed, this is just how most good software gets created. … Hence the next leap: could you do the same thing in painting, or in a novel?
Zitat: If there’s one piece of advice I would give about writing essays, it would be: don’t do as you’re told. Don’t believe what you’re supposed to. Don’t write the essay readers expect; one learns nothing from what one expects. And don’t write the way they taught you to in school.
in dieser Serie von Artikeln will euch ein ganzheitliches Verständnis über Machine Learning vermitteln. Wir werden eine Reihe von Algorithmen kennenlernen, wir werden uns dazu verschiedene Typen von Lernverfahren anschauen. Darunter sind sog. überwachte Lernverfahren wie Regression, Klassifikation (z.B. mit Support Vector Machines) sowie unüberwachte Lernverfahren wie Clustering (hierarchische und nicht-hierarchische Verfahren wie z.B. k-Means ) und schließlich werden wir zu Deep-Learning mit neuronalen Netzwerken übergehen und uns Bilderkennung und Reinforcement-Learning anschauen. Euch sagen viele dieser Begriffe nichts oder ihr habt nur eine vage Vorstellung davon? Dann ist diese Artikelserie für euch richtig!
Wir werden uns zu jedem Verfahren die zugrunde liegende Intuition und Theorie aus der Vogelperspektive anschauen, Anwendungen mit scikit-learn in Python kennenlernen. Dafür werden wir anhand realer Daten sehen, was die Verfahren von uns als Input erwarten, was wir als Output erhalten können, und wie wir diesen interpretieren können.
Schließlich wollen wir uns aber auch die genaue Funktionalität anschauen, indem wir die zugrundeliegende Mathematik nachvollziehen und noch tiefer eintauchen. Dafür werden wir die Verfahren in einfacher Weise selbst programmieren. Das wird euch letztlich helfen, die Verfahren wirklich zu verstehen, was euch in Zukunft helfen wird, wenn ihr die Verfahren auf neue Problemstellungen anwenden werdet.
Voraussetzungen sind Grundkenntnisse in Python 3. Es schadet nicht, wenn ihr euch etwas in Wahrscheinlichkeitsrechnung und Statistik auskennt. Es ist aber keine zwingende Voraussetzung. Ich will versuchen es einfach zu halten.
Was ist Machine Learning? Ein erstes Beispiel.
Machine Learning ist nicht alt. Die Forschungsgeschichte beginnt in etwa in den 1950er Jahren. Machine Learning ist die Wissenschaft oder Kunst, Maschinen (bzw. Computer) so zu programmieren, dass diese selbstständig aus Daten lernen können.
Arthur Samuel definierte etwas allgemeiner im Jahre 1959: Machine Learning ist die Erforschung von Methoden, Maschinen die Fähigkeit zu geben zu lernen, ohne sie explizit zu programmieren.
Eine quantitativere Definition ist die folgende: Eine Machine lernt aus einer Menge Daten D, in einer bestimmten Aufgabe A in Bezug auf ein Leistungsmaß L besser zu werden, wenn die Leistung in Bezug auf A gemessen in L mit der Menge D zunimmt.
Letztlich geht es darum, sich das Leben einfacher zu machen und Wissen nicht explizit in Form von Regeln programmieren zu mussen, sondern einer Maschine ein Verfahren zu geben, mit dem sie selbstständig lernt. Ein Beispiel ist der Spamfilter. Er erkennt anhand von Beispielen für Spam und Nicht-Spam (“Ham”) neuen Spam und Ham. Weil er mit Beispielen arbeitet, die ihm sagen, wonach er suchen soll, spricht man dabei von einem sog. überwachten Lernverfahren. Eine sehr simple Methode, Spam zu erkennen wäre folgende: jede neue E-Mail wird mit einer Liste von Spam-E-Mails vergleichen, von denen der Spamfilter bereits weiß, dass sie Spam sind. Es muss dann aber nur ein einzelnes Wort, ja nur ein einzlener Buchstabe in einer neuen Spam-E-Mail anders sein als in einer der bereits bekannten Spam-E-Mail und der Spamfilter würde diese E-Mail nicht mehr als Spam erkennen. Ihr könnte euch vorstellen, dass durch Austauschen oder Hinzufügen von Zeichen in bereits bekannte Spam-E-Mails unbegrenzt viele neue Varianten von Spam enstehen könnten. Es ist also kein sinnvolles Verfahren, Spam-E-Mails durch “Auswendiglernen” bzw. durch von Hand programmierte Regeln zu erkennen. Besser wäre es, wir hätten ein Verfahren, dass Spam-E-Mails automatisch, möglichst zuverlässig detektiert, ohne “echte” E-Mails auszusortieren. Wir brauchen ein echtes Vorhersageverfahren.
Hier kommt Machine Learning ins Spiel. Eine Möglichkeit wäre nun, dass ein Verfahren lernt, welche Worte häufiger in Spam und welche häufiger in Ham vorkommen. Ein Machine-Learning-Verfahren könnte nun die Wahrscheinlichkeit, ob eine Mail Spam oder Ham ist aus der Anzahl Worte ableiten, die eher in Spam oder eher in Ham auftreten.
Eine der ersten hierfür eingesetzten Methoden war der sogenannte Naive Bayes Filter. Es handet sich dabei um ein überwachtes Lernverfahren und genauer eine sog. Klassifizierungsmethode. Sie klassifiziert E-Mails entweder als Spam oder Ham.
Zu Anfang weiß der Naive-Bayes-Filter nichts. Er braucht zunächst Daten D. Diese bekommt er von uns, die wir E-Mails lesen und als Spam markieren. Immer wenn du oder ich eine E-Mail als Spam markieren, kann der Spamfilter lernen, dass die Worte aus der Spam-E-Mail für Spam typisch sind. Tritt nun in vielen Spam-E-Mails immer wieder das Wort “Viagra” auf, so werden diese in Zukunft herausgefiltert. Der Naive Bayes Filter wird mit den von uns gelieferten Daten D, in seiner Aufgabe A Spam zu erkennen in puncto Leistungsmaß “Anteil richtig erkannter Spam-E-Mails” L mit zunehmender Menge Daten D besser.
Wir werden in den nächsten Kapiteln weitere Aufgaben und weitere Methoden kennenlernen.
Wir leben im goldenen Zeitalter des Machine Learning!
Wir leben in einer aufregenden Zeit! Ihr könnt heute das Machine Learning Verfahren eurer Wahl auf 100.000 Euro teurer Hardware bei z.B. Amazon AWS, Googles Cloud oder Microsoft Azure oder vielen anderen Anbeitern auf Terrabytes von Daten anwenden und Modelle erhalten – zum Spaß, für eure Softwareprojekte oder eure Businessidee. Und das Ganze für wenige Euros pro Stunde. Gleichzeitig sind über Programmiersprachen wie Python und Module wie scikit-learn Machine-Learning-Verfahren auch für wenig erfahrene Entwickler verfügbar. Viele Verfahren lassen sich auch ohne Verständnis ihrer genauen Funktionsweise sofort anwenden. Wer es etwas genauer Wissen will und bessere Ergebnisse erzielen will und erfahren will, für welches Problem, welches Verfahren am besten geeignet ist, für den ist diese Aritkelserie!
Im nächsten Teil werden wir uns Machine Learning noch etwas genauer aus der Vogelperspektive anschauen und lernen, welche Arten von Verfahren es gibt. Im übernächsten Artikel werden wir bereits eine erste Aufgabe und eine praktische Lösung dafür kennenlernen.
Ich rege mich im Alltag immer wieder über aus meiner Sicht technische Probleme auf, die einfach nicht gelöst werden. Das meiste davon ist nicht Kriegsentscheidend. Wenn man aber bedenkt, dass unsere Gesellschaft eben an vielen Stellen durch inkrementelle Beschleunigung besser geworden ist, sind sie aber dennoch eine Diskussion wert. Ich werde immer wieder mal eine Sache in den Raum stellen, die mir auf den Geist geht. Und bin auf eure Meinungen bzw. Kommentare dazu gespannt.
Heute: Google Maps.
1. Man bekommt vom Google Assistant auch für Kontakte für die man die Adresse hinterlegt auf Anfrage keine Route. Frage ich etwa:
* Ok Google.
* Zeige mir den kürzesten Weg zu bekomme ich eine Google Suche als Ergebnis.
What? Das kann doch wohl nun echt nicht so schwer sein, Dr. Google. Löst das bitte mal. Nicht immer nur von Innovationgeschwindigkeit reden, sondern auch mal machen!
Nicht falsch verstehen, liebe Google, ich finde euch klasse, aber manche Funktionen könntet ihr einfach echt noch verbessern! Meiner Meinung nach könnte da helfen euer Image als Runaways in der Techsphäre zu stabilisieren!
2. Ich reise beruflich häufiger. In den jeweiligen Städten bin ich aber wiederholt an denselben Orten. Dennoch ist die Angabe “Arbeit” immer die gleich für einen meiner Einsatzorte in Hamburg. Nie aber in dem für Frankfurt, Desden oder wo auch immer. Gleichzeitig könnten die letzten Suche sich am jeweiligen Aufenthaltsort orientieren. Wenn ich eben in Frankfurt bin, dann interessieren mich meine Ortssuchen aus Hamburg eher weniger. Richtig genial wären ja Ortsprofile, die man über einen Button und dann ein Dropdown auswählen könnte.
Zusammengenommen würde mir beides pro Monat bestimmt 5 Minuten sparen. Und noch mehr Nerven, denn ich ärgere mich über beides sicher länger als die eingesparte Zeit. Auf 1.000.000 Menschen, die das auch interessieren könnte wären das pro Monat dann also 1041 Tage. Das ist schon ne Menge Holz. Würde sich also schon lohnen das einzubauen.